H(t)=-16(t)^2+100(t)+8

Simple and best practice solution for H(t)=-16(t)^2+100(t)+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16(t)^2+100(t)+8 equation:



(H)=-16(H)^2+100(H)+8
We move all terms to the left:
(H)-(-16(H)^2+100(H)+8)=0
determiningTheFunctionDomain -(-16H^2+100H+8)+H=0
We get rid of parentheses
16H^2-100H+H-8=0
We add all the numbers together, and all the variables
16H^2-99H-8=0
a = 16; b = -99; c = -8;
Δ = b2-4ac
Δ = -992-4·16·(-8)
Δ = 10313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-99)-\sqrt{10313}}{2*16}=\frac{99-\sqrt{10313}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-99)+\sqrt{10313}}{2*16}=\frac{99+\sqrt{10313}}{32} $

See similar equations:

| 3w+4-w=5-2(w-2) | | 5(-4)+2n=-10 | | 1.29x+15=x | | 6p-2p=3p-10 | | 13t=130 | | 9n=612 | | h/22=21 | | 6x-9=5=10 | | Y=0.90x+6.80 | | 125+25=10k | | 15u=630 | | d/12=22 | | 8y+5y=26 | | x3-3=x+57 | | 9k=630 | | -3(15x-1)=15x+3 | | 16s=816 | | 1/2x3=-27/4 | | b=-6-19 | | -21+4x=6x-21-(8x+12) | | 174=29t | | 0.5+0.2x=2.7 | | -2(5-k)^2+20=12 | | 25h=550 | | 3(5x+1)=-15x-3 | | n/26=7 | | 3(5x+1)=15x-3 | | d/7=23 | | 1.3x=749000 | | 15k=405 | | Y=9x0.75 | | 2050+225x=3750-200x |

Equations solver categories